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The convergence of solutions of the equation of high-intensity heat exchange to so- 
lutions of the classical problem of heat conduction is established when the relaxa- 
tion time of the thermal process tends to zero. 

Effects of high-intensity heat exchange are described by equations of the form [i] 

Oq OT (1)  
q + e a .  A Ox 

a2T O~T 
aT + e - -  :-- Fo (2) 

.... a~ a~ ~ ax ~ ' 

where e = Tr/To is a small quantity. Therefore, it is natural to consider system (I), (2) 
as a system with a small parameter, and use asymptotic methods [2-5] for its analysis and so- 
lution. Equations (i), (2) with e = 0 will be called unperturbed, while for e > 0 they are 
perturbed. A quite general form of expanding solutions of Eq. (2) in powers of the small 
parameter e was obtained in [6]. This expansion can be used to determine solutions of the 
hyperbolic equation of heat conduction. Below we construct such an expansion, making it 
possible to establish convergence of solutions of the perturbed equations to solutions of 
the unperturbed ones for e + 0. 

We denote by qo(x, T), To(x, ~) the solutions of the unperturbed equations. Consider 
the heat-conduction process in a layer of material of thickness Z. We supplement (i), (2) 
by the initial conditions 

q(~, o) = ~(x), (3)  
(4)  

T(x, 0 )=0o(X) ,  OT(x, O) =O2(x). 
Or 

As boundary conditions we select cov~itions of type I: 

T(O, ~) = ~1(~), T(I ,  T) = ~,(~). (5) 

The solution of the boundary-value problem (2), (4), (5) is represented In-the form 

(6) 
T(x ,  ~, e ) =  To(x, ~ ) + S T l ( / ,  T)+  (8~1(x)+82~,(x))exp ( - - ~ . )  + u { x ,  8), 

where the  f u n c t i o n s  To(x,  T)p Ts(x ,  z ) ,  u z ( x ) ,  u , ( x ) ,  u (x ,  z ,  r s a t i s f y  the  f o l l o w i n g  bound- 
ary-value problems: 

OTo = Fo 02To 
O'r ax~ 

aT----2-~ = Fo a2Tt 

~ tx) = 07"o (x, O) 
' a*  - -  01 (X), 

Ou a2u O'.u 
+ e - - = F o - -  

aw a.~ ~ ax "~ 

u (x, o, s ) =  

, To (x, 0) = 0o (x), To (0, ~) = q,, (~), To (z, ~:) = r  00; 

a'-T.,  T~ (x, 0) = - -  =~ (x), T~ (0, x) = T~ (l, x) = 0 ;  
0xz 

~, (x) = c)T1 (x, O) 
or  , ~;'(o)=.~,(0=%'(o) - ~ ( z ) = o ;  

+ Fo (end" (x)+ ezn~ ' (x))exp ( - - + )  - - e  z (xi+ +) 
aT2 , 

Ou(x, O, ~ ) =  O, u(O, *, 8 )=  u (l, T, e ) =  O. 
Or 
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We allow t h a t  the functions ~(x) and 0aT,/Sx a be decomposed into uniformly (and ab- 
solutely) converging Fourier series: 

nax (ii) s - a~' (x) = n ~  sin na.._____~x. OZT1 (x, x) = ~ ~1. (~) sin ~ ,  
. = l  1 ' 0"~z ,,=I~ I 

whose coefficients are determined by the well-known equations of [7]. 

The function u(x, T, c) will be sought in the form of the series 

u ( x , ~ , O  9 u ~ ( ~ '  
= . - , -  e) s i n - - ~  .mxx (12)  

n=l 

We substitute (ii), (12), into (i0), obtaining a system of boundary-value problems to de- 
termlne the functions Un(X, e), n ffi i, 2, ,..: 

8u .+u , ,+  Fou,, -=v.(T, O, u,,(0, ~) .... . . (0,  0 : 0 ,  

2 
P. (x, e) = Fo exp ( - -  x.~] " %m e' ~, ,  - -  ehl,, (X). 

(14) 
t .  8., I 

' . '=1 

We denote the roots of the characteristlc equation of problem (13) by k, and k2: 

. . . .  A 112,,.,-. k, (1 q- A.u~)/2~. k., .... (1 - -  . ]/ze, An ~ 1 - -  4 F ~ ( n a / l )  z. (15)  
Solving problem (13) by the method of variation of arbitrary constants, we obtain 

I i P,  (s, e) An '/~ (exp [/h ('r - -  s)l - -  exp [k~ (x - -  s)]) ds for a,. > 0;. 

(16) u.(~, O =  : 8 
p . ( s ,  8) ( g - s )  exp ( 

0 ,g 

0 
A. < ;0 .  

--s/ds for A n =  O, 
2 8  

"6--8) '/~,~.(T sin IA'41 -- s) ds 
- 8  

for 

Substituting expression (14) into (16) and evaluating the integrals obtained, we have 

where 

un(x, e ) = 2 F o a . ( ' q  e)'~-~j ~i+'uin--~z b,,(x, ~, s) ll,~(s)ds, 
( 1 7 )  

a.(~,0 = 

I([ ] [ ( 1 - - A , J  -1 exp ( l+AS. /2 )~  . - -exp 

• A~ -l/~ + e, xp [ (1 4-2~A~"2) ~ ] -q- exp[[ 

( 1 --2e~X/") z .)]' 

( 1 -- A~ :2) "~ ] 
2~ J 

__ __ ~_!_ [ ~ ~I 7 

; 

( 571 ~ cos LA'~IW'-'x ' - -  2 e 7- exp A,, < O: 

(18) 
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A~ -1/'~ (exp [ .... ( 1 -  A~P')('r:--s) 

(1 -F A~/'~) (x --. s) ] ' ) A~>0; 
b,,(x ~, s)--- 2e ~ , '  

/ (x--s____~) exp ( "~--s , A,~=0; (19) 
, 2r 

._~ , .~  , (' '~-- s IA.i~/-" (T- -  s) 
21A,, f ,-exp , ~ ) s i n  2e  , A . < O .  

Thus, the following representation is valid for the function u(x, T, e) 

E E l l 
i=1  n = l  n = l  0 

I t  f o l l o w s  from Eqs.  (18 ) ,  (19) t h a t  fo r  m > 0 and s u f f i c i e n t l y  s m a l l e ~ O  we have  fo r  a l l  
n = i, 2, ... 

la~(T, ~)1 ~<C~, lb.(x, e)l ~<Cx. (21) 

Indeed, Eqs. (18), (19) show that one must investigate the boundedness of the functions 
an(T, e) and bn(x ,  e) a t  An § 0 and A n -~ 1.  S ince  lim [(exp(--A~l~/2e)--exp(A~n/~z/2e))/A~./~] = 

~/-~-o 
An 

- - r / e ,  one can s e l e c t  the  number ~, > 0 i n  such a manner t h a t  I(exp(--A~l~T/2e)--exp(A~l~'~/2r 
/A~/~l~.<z/r as  on ly  0 < A~/2 < 6 , .  From Eq. (18) we o b t a i n  f o r  0 < -n^*/~ < 6 '  

,a,~(x, e)l< l--[exp(--'~/2s)('~-'~---q-O.l~-Fexp(--(l--~,)'~l 2~) +exp( - -x /2e )+2exp( - - '~ /e ) ] .  (22) 
1 --6~ L \ e  / 

Consider an(~, e) as ~n § I. We transform Eq.  (18): 

a,~('q ~) = A~/'~ exp(- -~/2e)(exp(- -  A~n~/2 e) - -  exp (--  ~/2 e)) e x p ( - - ( l - -  A~/~)~/2e)--exp( - x/e) .(23) 

1 + A~/~ 1 -- A~/2 
T S ince  l i t  [ (exp(- -A~/2T/2r  can s e l e c t  a number ~2 > 0 so 

l _ A l / 2  2 S  

that [(exp ( - -  A~/~T/2 e) - -  exp (--  x/2 s))/(l-- A~/ ')I~ x ,i, -~8 -~ 0.1t as only i --A~ < ~2. We note that 
for An § 1 we h~ve, due to (15), i -- A~/2 2~Foe(~n/Z) ' > 2Foe(~/Z)'. From Eq. (23) we ob- 
tain for I-- A~/2 < ~ 

la, (T, e)l .~ 1 --1 8--"--'~ [ exp ( - - , / 2  e)(T/2 8 + 0 . 1 )  ..t. 2 - -  6- - - -~1  (exp(_Fo(nll)ZT)._Fexp(_,/e))]" (24) 

One similarly estimates an(T, e) for An < 0. Estimates (22), (24) show that if r is selected 
to be sufficiently small, so that (x/e)exp('-T/2~) < 8, then estimate (21) is valid for an(T, 
s The functions bn(T, E) are estimated similarly. 

Due to the absolute convergence of series (ii) 

E x p r e s s i o n  (20) w i t h  a c c o u n t  o f  (21 ) ,  (25) l e a d  to t h e  estimate [u(x, ~, s ) I~.C x ( 2 F o ( e 2 + e  s) 
+ ~Bz). C o n s e q u e n t l y ,  f o r  f i n i t e  t ime  v a l u e s  

u(x, "~, e) = 0(8~). (26) 

Expression (26) shows that the representation of the solutions of the boundary-value problem 
(2), (4), (5) in form (6)-(10) makes it possible to investigate for r § 0 the asymptotic be- 
havior of the solutions of the hyperbolic equation of heat conduction accurately up to terms 
in e 2. It follows from Eq. (6) that for Tx(X, T), wi(x) and finite x values the solution of 
the hyperbolic equation of heat conduction tends to the solution of the classical parabolic 
problem uniformly in (x, x), x~>0, 0~<x~<l 
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We note that the function 8u/~x satisfies the system (i0), whose right-hand side con- 
sists of the functions ~1"(x) and ~'(~T,l~x)/~z ~. Thus, if expansions of the form (ii) oc- 
cur for the latter functions, then an equation similar to (26) is valid for 3u/~x. Conse- 
quently, for ~ § 0 

aT(x, -~, 6) + OTo(x, "0.. (27) 
Ox Ox 

We write down the solution of problem (i), (3): 

q (x, "% e) = ~ (~) exp --- + ~ exp �9 -- s --A ds. 
g 0 ~ g 

We assume that the temperature gradient 3T(x, T, e)/dx is a continuously differentiable func- 
tion in z. Using then integration by parts, we obtain: 

q(x, "% r OT(X,ox ~' ~) +(• +A OT(X,oxO, ,) exp( z._L~+ ~'exp ( \ .  r / ~ , z--s~ ]-~s \(A OT(Z,oxS, ~)ds.  (28) 

From Eq. (28) with account of (27) and the definition of qo(x, T) follows then for e -> 0 the 
pointwlse convergence q(x, T, e) -> qo(x, T) if T > 0. This convergence is uniform in (x, T) 

for T~0, 0~x<l If ~ (x) ---- -- A @T(x, 0) 
Ox 

Thus, under conditions that the original data of the problem guarantee the required 
smoothness of the functions ~i(x) and T,(x, T), the solutions of the equation of high-in- 
tensity heat exchange tend to the solutions of the classical problem of heat conduction when 
the relaxation time of the thermal process tends to zero. 

NOTATION 

T, temperature; q, heat flux; x, a spatial coordinate; T, time; A, dimensionless thermal 
conductivity, A = %T*/Zq*; %, thermal conductivity; T* and q*, temperature and heat flux 
scales; Fo, Fourier number Fo = az@/Z2; a, thermal dlffuslvlty; T@, time scale; Tr, relaxation 
time of the thermal process, and when the sign / is used in equations it is assumed that di- 
vision is performed over all quantities appearing after this sign. 
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